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Cavity approach to noisy learning in nonlinear perceptrons
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We analyze the learning of noisy teacher-generated examples by nonlinear and differentiable student per-
ceptrons using the cavity method. The generic activation of an example is a function of the cavity activation of
the example, which is its activation in the perceptron that learns without the example. Mean-field equations for
the macroscopic parameters and the stability condition yield results consistent with the replica method. When
a single value of the cavity activation maps to multiple values of the generic activation, there is a competition
in learning strategy between preferentially learning an example and sacrificing it in favor of the background
adjustment. We find parameter regimes in which examples are learned preferentially or sacrificially, leading to
a gap in the activation distribution. Full phase diagrams of this complex system are presented, and the theory
predicts the existence of a phase transition from poor to good generalization states in the system. Simulation
results confirm the theoretical predictions.
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I. INTRODUCTION

Since Hopfield’s pioneer work on neural networks@1#,
statistical mechanics has been proved to be a powerful
in the study of information processing. Mean-field theor
such as the replica method@2–4# and the cavity method
@2,5–7# are successfully developed to study these proble
In particular, it provides valuable insights to the learning
examples in neural networks by considering it as an ene
minimization process. Early work used the replica method
study the learning problem in various situations@8–11#. It
has the advantage of a readily-used mathematical forma
applicable to general cases, and has been applied to li
networks@12–15# and networks with binary outputs@11,16–
21#, dealing with learning tasks that are either realizable
unrealizable, random or teacher-generated data, and cle
noise corrupted data. These studies mainly focused on
global properties of the learning system, with less emph
on the microscopic description of the examples and
weights in the system. Furthermore, most of these mo
were still remote from the differentiable nonlinear perceptr
that is most commonly used today. Other work used
Green’s function approach that is particularly convenient
linear networks@22#, but these systems may not have t
competitive effects among examples in nonlinear netwo
which will be investigated in this paper. The annealed
proximation is suitable for analyzing high-temperature lea
ing @3#, but the results cannot be directly extended to
more common case of low temperature.

A common phenomenon observed in the studies of lea
ing from examples is the existence of phase transitions w
abrupt improvement in the generalization ability of the n
works once the training examples are sufficiently numero
or the global parameters~e.g., the weight decay! are suitably
tuned @23–27#. These transitions are often discontinuou
They arise when metastable states are present in the sy
leading to discontinuous jumps in the network states, hys
eses, and the disappearance of metastability at spin
points. Multilayer perceptrons will exhibit a transition from
permutation symmetric to specialized states@4#. In the
1063-651X/2001/64~6!/061912~13!/$20.00 64 0619
ol
s

s.
f
y

o

m
ar

r
or

he
is
e
ls
n
e
r

s,
-
-
e

n-
th
-
s,

.
em,
r-
al

present paper, we will see these effects in nonlinear perc
trons learning noisy examples. Here the competition betw
the locally stable states comes from the different learn
strategies used to attain the systemwide energy minimum

The cavity method is a suitable tool to study informati
competition effects in rule extraction from noisy example
Large scale neural networks with many nodes can be con
ered as mean-field systems since, as far as the learning o
example is concerned, the influence of other examples ca
regarded as a background satisfying some average prope
The success of the mean-field approach is illustrated by
capability of the replica method in describing the mac
scopic properties of neural network learning@4#. However,
the replica method provides much less interpretation on
processing of individual examples since its starting poin
the quenched average of the free energy over the exam
distribution. The cavity method is an alternative version
mean-field theory. It is a generalization of the Thoule
Anderson-Palmer approach to spin glasses and starts fro
microscopic description of the system elements@28,2#. In
this method, mean-field equations are derived from s
consistent considerations. The method was subseque
generalized to learning problems@5,6,29# and yields macro-
scopic properties identical to the replica method while at
same time provides physical insights to the learning of in
vidual examples. Recently, the cavity method was also
plied to a number of problems in information processi
@30#.

In this paper, we study the learning of noisy examples
nonlinear perceptrons using the cavity method. Nonlin
networks have the following advantages:~i! compared with
networks with binary output, gradient descent learning
possible,~ii ! nonlinearity is representative of more comple
networks,~iii ! they have more resemblance with biologic
neurons@31#. Compared with previous studies, we will focu
on the effects of information competition in the system, a
their consequences on the energy landscape, the appea
of band gaps in the activation distribution, the choice b
tween preferential and even-handed learning strategie
well as their possible relationship with phase transitions
©2001 The American Physical Society12-1
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this complex system. We analyze the parameter regimes
band gaps in the activation distribution, as well as the sta
ity condition of the perturbative cavity approach. Simulati
results show that the assumption of a smooth energy la
scape usually works well when no gaps are present, but te
to fail when gaps appear. The phase diagram of this com
system is shown and the occurrence of phase transition
investigated and compared with simulations.

The rest of this paper is organized as follows. After d
scribing the model in the next section, we describe in Sec
the cavity approach and introduce the cavity activati
which is the core microscopic variable in the cavity metho
Three self-consistent equations are derived when a sm
energy landscape is assumed. In Sec. IV, we discuss the
when band gaps appear in the activation distribution. Ph
transitions in nonlinear perceptrons and phase diagrams
the themes of Sec. V. In Sec. VI we summarize the res
and their implications. Mathmetical details are appended
the end of the paper.

II. THE MODEL

Consider a student perceptron withN weights Jj , j
51, . . . ,N, connecting theN input nodes and the outpu
node. It is trained to extract the rule of a teacher percep
with the same architecture withN weightsBj , j 51, . . . ,N,
where ^Bj&50 and ^Bj

2&51. A training set ofp examples
generated by the teacher and corrupted by noise is wha
student can explore. Each example, labeledm with m
51, . . . ,p, consists of the input vectorjm and the noisy
output Om of the teacher. The input componentsj j

m are
Gaussian random variables, witĥj j

m&50 and ^j j
mjk

n&
5d jkdmn . The activation functionsf (x) of both perceptrons
are differentiable and nonlinear, such as sig(x)[(1
2tanhx)/2, i.e., the teacher and student outputs are, res
tively,

Om[ f ~ ỹm![ f ~ym1Thm! and f m[ f ~xm!, ~1!

whereym[B•jm/AN is the teacher activation,hm is Gauss-
ian noise witĥ hm&50 and^hm

2 &51,T is the noise tempera
ture, andxm[J•jm/AN is the student activation.

During the training procedure, one adapts the student
work to minimize an energy function that measures the
ference between student outputsf m and teacher outputsOm
for all training examples. A natural energy function is t
total quadratic error of examples in training set,(m51

p (Om

2 f m)2[p« t
2 , where we call« t training error. However, the

final target of learning is to get a student perceptron that
generalize well to novel examples, i.e., to minimize the g
eralization error«g[^ @O(j)2 f (j)#2&1/2, where ^ & is the
average performed over the distribution of all inputs and
noise. We add a weight decay term to penalize excessi
long weight vectors and speed up learning, and use the
ergy function

E5
1

2 (
m

~Om2 f m!21
l

2 (
j

Jj
2 , ~2!
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wherel is the weight decay strength. Minimizing the abo
energy function by gradient descent, one obtains the equ
rium state of the student perceptron given by

Jj5
1

lAN
(
m

~Om2 f m! f m8 j j
m , ~3!

where the prime inf m8 represents the derivative off (xm).
Here we are interested in the dependence of the genera
tion error«g of the student perceptron in its equilibrium sta
~3! on the macroscopic parameters, such as the weight d
strengthl, the noise temperatureT and the size of training
seta[p/N. As in perceptrons with linear or discrete activ
tion functions, the generalization error is essentially de
mined by the overlap of the student weight vector with t
teacher weight vectorR and the magnitude of the stude
weight vectorq, which are defined as

q5^Jj
2& j and R5^JjBj& j , ~4!

where^ & j represents averaging over theN weights.

III. THE CAVITY METHOD

The cavity method developed in Refs.@6,29# is used to
tackle the current problem in order to get more microsco
understanding of the mechanism in the learning of neu
networks. After the student perceptron is trained withp ex-
amples, it reaches its energy ground stateJ given by Eq.~3!.
Suppose a new example with input vectorj0 is fed to the
student perceptron. The activation of example 0 is now giv
by

t0[
1

AN
J•j0, ~5!

which is called the cavity activation. Since the studentJ has
no information about an example it has never learned,
cavity activationt0 is a Gaussian variable for random inpu
j j

0 when N@1. It has a mean̂ ^t0&&50 and covariances
^^t0

2&&5q and ^^t0y0&&5R, where ^^ && denotes the en-
semble average. Hence the distribution of the cavity field

P~ t0uy0!5

expF2
~ t02Ry0!2

2~q2R2!
G

A2p~q2R2!
. ~6!

Trained with all the p11 examples $(jm ,Om)um
50,1, . . . ,p%, the student perceptron reaches its equilibriu
stateJ0, with

Jj
05

1

lAN
~O02 f 0

0!~ f 0
0!8j j

01
1

lAN
(
m

~Om2 f m
0 !~ f m

0 !8j j
m .

~7!

Here and below, variables with superscript 0 refer to tho
associated with the perceptronJ0, which includes example 0
in its training set. We see that the generic student activa
2-2
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CAVITY APPROACH TO NOISY LEARNING IN . . . PHYSICAL REVIEW E64 061912
of example 0,x0[J0
•j0/AN, is not a Gaussian variable

~Although the correct notation ofx0 should bex0
0, here we

omit the superscript since it is sufficiently distinct from i
cavity counterpartt0.! However, it is reasonable to assum
that the difference betweenJ andJ0 is small; the validity of
this assumption will be discussed later. Following the per
bative analysis in Ref.@6#, we show in Appendix A that, for
a given corrupted teacher outputỹ0, there is a well defined
relation betweent0 andx0 ,t05t(x0 ,ỹ0), where

t~x,ỹ!5x2g@ f ~ ỹ!2 f ~x!# f 8~x!. ~8!

Here the parameterg is the local susceptibility and satisfie

12gl5a K 12
]xm

]tm
L

m

, ~9!

wherexm is a single-valued function oftm , and ^ &m repre-
sents averaging over thep examples. In this section we wil
focus on the case that Eq.~8! presents a one-to-one mappin
betweenxm and tm for a given ỹm . As we shall see, this
corresponds to a continuous activation distribution with
band gaps. In the next section we will discuss the case w
tm has a one-to-many relation withxm , which will lead to the
emergence of band gaps.

Combining Eqs.~6! and ~8!, we can derive the studen
activation distributionP(xu ỹ,y),

P~xu ỹ,y!5P„t~x,ỹ!uy…
]t~x,ỹ!

]x
. ~10!

In turn, the distributionsP( ỹuy) andP(y) are given by

P~ ỹuy!5
1

A2pT2
expF2

~ ỹ2y!2

2T2 G , ~11!

P~y!5
1

A2p
expS 2

y2

2 D . ~12!

Equation~9! for g can now be transformed to an integr
expression whenN is very large,

12gl5aE dyP~y!E dỹP~ ỹuy!E dxP~xu ỹ,y!S 12
]x

]t D ,

~13!

where ]x/]t5„11g$@ f 8(x)#22@ f ( ỹ)2 f (x)# f 9(x)%…21

from Eq. ~8!. Equation~13! can be simplified into an equa
tion involving only double integrals,

12gl5aE DuE DvS 12
]x

]t D , ~14!

where Du[du exp(2u2/2)/A2p and Dv[dv
3exp(2v2/2)/A2p are Gaussian measures,ỹ5A11T2u,
andx and t depend onu andv via
06191
r-

o
en

R

A11T2
u1Aq2

R2

11T2
v5t~x,ỹ!. ~15!

The mean-field equation forR can be obtained by multi-
plying both sides of Eq.~3! with Bj and summing overj,
yielding

R5
a

lE dyP~y!E dỹP~ ỹuy!E dx

3P~xu ỹ,y!@ f ~ ỹ!2 f ~x!# f 8~x!y. ~16!

Using Eqs.~10!–~12!, ~14! and~15! and after elaborate inte
grating by part, we arrive at

R5agE DuE Dv f 8~ ỹ! f 8~x!
]x

]t
. ~17!

Similarly, multiplying both sides of Eq.~3! with Jj , and
summing overj, we have another mean-field equation forq,

q2R25ag2E DuE Dv@ f ~ ỹ!2 f ~x!#2@ f 8~x!#2. ~18!

The three macroscopic parametersg, R, andq can now be
obtained by solving the three mean-field equations~14!, ~17!,
and~18! numerically for given values ofa, l, andT. There-
fore, we can directly obtain the training error« t and gener-
alization error«g , which depend on the generic activationx
and cavity activationt, respectively,

« t
25E DuE Dv@ f ~ ỹ!2 f ~x!#2, ~19!

«g
25E DuE Dv@ f ~ ỹ!2 f ~ t !#2. ~20!

The validity of the perturbative calculation can b
checked by considering the stability condition of the equil
rium state. As derived in Appendix B, when the new exam
0 is added, the magnitude of the change in the student we
vector is given by

DJ[(
j

~Jj
02Jj !

25
~x02t0!2

12a K S 12
]xm

]tm
D 2L

m

. ~21!

HenceD diverges when the denominator approaches 0. T
yields the stability condition

a K S 12
]xm

]tm
D 2L

m

,1. ~22!

It is identical to the stability condition of the replica
symmetric ~RS! ansatz in the replica approach@11,6#, the
so-called Almeida-Thouless~AT! condition @32#.

In the region where the stability condition~22! is violated,
the perturbative version of cavity method breaks down
becomes possible that when a new example is added to
2-3
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PEIXUN LUO AND K. Y. MICHAEL WONG PHYSICAL REVIEW E 64 061912
system, the ground state relocates to another metas
state. This corresponds to the picture of a rough energy la
scape with many metastable states and the perturbative
ity method has to be modified@29#. In the formalism of the
replica method, it was shown by Parisi that breaking of
replica symmetry is the thermodynamical transcription of
existence of many pure thermodynamic states@33#. Hence
the RS and replica symmetry-breaking~RSB! approxima-
tions in the replica method describe the situations of smo
and rough energy landscapes, respectively.

IV. ACTIVATION DISTRIBUTIONS WITH BAND GAPS

When the activation functionf (x) is nonlinear, the behav
ior of the system may be very complex. This can be seen
considering Eq.~8! for a sufficiently largeg, when the ge-
neric activationx may become a multivalued function of th
cavity activationt.

To compare the energy of the possible states, we cons
the energy difference between the perceptron statesJ0 andJ.
According to Eq.~3!,

DE[E02E5
1

2
~O02 f 0

0!21
1

2 (
m

@~Om2 f m
0 !2

2~Om2 f m!2#1
l

2 (
j

@~Jj
0!22Jj

2#. ~23!

Expanding the first summation to the second order (xm
0

2xm)2 and substituting Eq.~3! and Eq.~7! to the second
summation, we can simplify the above equation to

DE5
1

2
~O02 f 0

0!21
1

2g
~x02t0!2, ~24!

using the relation between the cavity activationt0 and ge-
neric activationx0 in Eq. ~8!. The first term is the primary
change due to the newly added example, and the second
results from the adjustment of the background examples
the multivalued region, when the energy minimum favorsx0
to take a value closer tot0 ~therefore, favorable to sma
background adjustment!, the example issacrificed. Other-
wise, when the outputf 0

0 is closer to the teacher’s outputO0

~therefore favorable to small primary cost!, the example is
preferentiallylearned. The competition between the two po
sible responses to a new example leads to a discontinui
the range of the generic activationx0 when the cavity acti-
vation t0 varies, accompanied by the appearance of gap
the activation distribution for a given teacher outputO0.

To study this competition, we suppose that Eq.~8! has
multiple solutions ofx in a range oft for a givenỹ. We are
interested in the pointtg( ỹ) where two solutions yield the
same energy changeDE. That is, there are two distinct va
ues ofx,x, and x. , such thattg5t(x, ,ỹ)5t(x. ,ỹ) and
DE(x,)5DE(x.). Then using Eq.~24!, we arrive at the
condition
06191
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x,(tg)

x.(tg)

t~x!dx5tg@x.~ tg!2x,~ tg!#, ~25!

which is the Maxwell’s construction as shown in Fig. 1. A
the result of energy minimization, one of the two solutions
x is preferred on the left neighborhood oftg , while the other
is preferred on the right. Hencex is a function oft with a
discontinuity attg . Consequently, a band gap appears in
student activation distribution for a given teacher output,

P~xu ỹ!50 when xP@x,~ tg!,x.~ tg!#. ~26!

Extra terms should then be added to the mean-field eq
tions Eqs.~14! and~17! for g andR, as derived in Appendix
C, namely,

12gl5aE Du(
i
E

Ri

DvS 12
]x

]t D2aE Du(
j

G~ tg
j !

3@x.~ tg
j !2x,~ tg

j !#, ~27!

R5agE Du(
i
E

Ri

Dv f 8~ ỹ! f 8~x!
]x

]t

1agE Du(
j

G~ tg
j ! f 8~ ỹ!@ f „x.~ tg

j !…2 f „x,~ tg
j !…#,

~28!

where each term in the summations overi corresponds to an
integration over a regionRi separated from each other b
band gaps, and each term in the summations overj corre-
sponds to a band gap. The Gaussian factorG(tg

j ) is given by

FIG. 1. The Maxwell’s construction to determine the position
band gaptg . In the figure, the areas of the two shaded regions eq
to each other. BetweenP,

c andP,
tr , the left state competes with

metastable right state betweenP.
sp and P.

tr , but the left state re-
mains the ground state. Similar competitions exist betweenP.

tr and
P.

c .
2-4
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CAVITY APPROACH TO NOISY LEARNING IN . . . PHYSICAL REVIEW E64 061912
G~ tg
j !5

1

A2pS q2
R2

11T2D
expF 2

S tg
j 2

R

A11T2
uD 2

2S q2
R2

11T2D G .

~29!

We note that the extra terms due to gaps are consistent
adding the delta function component (x.2x,)d(t2tg) to
]x/]t in Eq. ~14! and @ f (x.)2 f (x,)#d(t2tg) to
f 8(x)]x/]t in Eq. ~17!.

For the sigmoid functionf (x)5(11e2x)21, the neces-
sary and sufficient condition for Maxwell’s construction,
derived on Appendix D, is

f ~ ỹ!2
1

2
.W~g! for x,0,

1

2
2 f ~ ỹ!.W~g! for x.0, ~30!

where the functionW(g) is monotonic, as shown in Fig. 2
The behavior of the activation distribution depends on
value ofg in the following three cases.

Case 1: g,(1171165A33)/64'16.64. As W(g).1/2
and 0< f ( ỹ)<1, the condition~30! cannot be satisfied for al
teacher outputf ( ỹ). Hence there is no gap in the activatio
distribution.

Case 2:16.64,g,48. Here 0,W(g),1/2. The activa-
tion distribution starts to develop a band gap that exte
from f ( ỹ)51 to f ( ỹ)51/21W(g) in the regionx,0. Simi-
larly, another band gap extends fromf ( ỹ)50 to f ( ỹ)51/2
2W(g) in the regionx.0. The two band gaps are symme
ric with respect to the point„f (x), f ( ỹ)…5(1/2,1/2). For in-
termediate teacher output between 1/26W(g), the distribu-
tion remains continuous.

Case 3:g.48. HereW(g),0. The band gap in the re
gion x,0 now extends fromf ( ỹ)51 to f ( ỹ)51/21W(g)
,1/2. Together with its symmetric counterpart in the regi

FIG. 2. The functionW of g defined by Eq.~D2!.
06191
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x.0, the activation distribution is three banded for 1
1W(g), f ( ỹ),1/22W(g), beyond which the activation
distribution remains two banded.

Case 2 is illustrated in Fig. 3, where a band gap exists
the regions that are shaded or enclosed by the transition
Ls

tr andLp
tr ~subscriptss andp represent sacrificed and pre

ferred states, respectively!. Near the sacrificed band edge, th
line Ls

c indicates the onset of competition. Between the lin
Ls

c andLs
tr ~or the region close right to the shaded one!, the

sacrificed state is competing with a metastable prefer
state, which appears between the spinodal lineLp

sp and the
line Lp

tr , but the sacrificed state remain the ground sta
Between lineLs

tr and the spinodal lineLs
sp , the sacrificed

state becomes metastable and disappears atLs
sp . Similar

lines exist in the neighborhood of the preferred band edge~or
the region close left to the shaded one!.

Figure 3 shows that preferential learning occurs at
treme values off ( ỹ). f ( ỹ1) or f ( ỹ), f ( ỹ2). The energy
advantage of this learning strategy can be easily underst
In nonlinear perceptrons, changes in the student activa
around these extreme values off ( ỹ) do not result in signifi-
cant changes in the training error of an example due to
saturation in this region, and if the cavity activation is ve
different from the teacher’s activation, it is more economic
to keep the student activation close to the cavity activati
so that the background adjustment remains small. In cont
for intermediate values off ( ỹ), the competitive effects are
less, and no band gaps develop.

The width of the band gap can be narrowed when
existence of metastable states is taken into account.
shown in Fig. 3, metastable states exist inside the band
as far as the spinodal linesLs

sp andLp
sp . Hence in finite-time

FIG. 3. The occurrence of band gap and preferential learn
wheng520.55. The picture is symmetric with respect to the po

~1/2,1/2!. For intermediate teacher output 0.136, f ( ỹ),0.864, no
band gaps exist. For related discussions in Figs. 4, 5, and Ta
when a53 andl50.002, the present value ofg corresponds to

T52.5, and the choice ofỹ52A11T2 corresponds to the line o

f ( ỹ)50.063, which cuts the boundaries of the shaded regionx

51.18 andx52.78, indicating a band gap ofP(xu ỹ) at @1.18,2.78#.
2-5
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PEIXUN LUO AND K. Y. MICHAEL WONG PHYSICAL REVIEW E 64 061912
simulations, the system may be trapped in metastable st
Conventionally, the narrowing of band gaps in simulations
interpreted by RSB effects in the replica method@19,20#.
Here the narrowing can be explained by metastability in
perturbative cavity method, even without invoking the fo
malism of RSB.

This kind of preferential learning is clearly not present
linear perceptrons, even when perfect learning is imposs
since the activationx is a linear function of the cavity acti
vation t, by virtue of Eq.~8!. Hence preferential learning is
unique consequence of the nonlinearity of the perceptron
tivation.

Figure 4 shows the parametric regimes for the existe
of gapped activation distributions as well as the unsta
regimes of the perturbative cavity method~the boundary line
being equivalent to the AT line in the replica method! for
different noise temperatures. Since the development of a
is already sufficient to cause an uncontrollable change in
~21!, the gapped regions lie inside the unstable regions. F
thermore, provided thata andT are not too large, the bound
aries of the gapped and unstable regions are very clos
each other. The region of small weight decay and large n
will be discussed in the next section, where the phase l
are modified when discontinuous transitions take place.

Trends for the existence of band gaps in the activat
distribution can be observed from Fig. 4. Gaps exist o
when the sizea of training set is small, leaving ambiguitie
about the underlying rule. Furthermore, increasing the d
noise broadens the gapped region, since it introduces
flicting information to be learned by the student. Final
since weight decay restricts the flexibility in the weig
space, and hence reduces the tendency for multiple min
gaps are found for smalll.

We check the appearance of band gaps predicted in
theory with simulations in Fig. 5. In Fig. 5~a!, g511.1 and
the stability condition~22! is fulfilled. The student activation

FIG. 4. Regimes of the existence of gapped activation distri
tion and regimes of unstable states for different noise temperat
Below the solid lines, the perturbative cavity solutions are unsta
and below the dotted line, band gaps will appear in the activa
distribution. The point (a53,l50.002) is denoted by a star. Th
shaded regions indicate the existence of discontinuous phase
sitions to be discussed in Sec. V.~For T50.1, the shaded region i
too small to be shown.!
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distribution in this case has a single band and is a sharp p
at x5 ỹ. When noise temperatureT increases to 2 whereg
514.9, the location of the point (a53,l50.002) in Fig. 4 is
slightly above the boundary between gapped and continu
regimes. Correspondingly, there is a pseudogap develo
in the activation distribution, as shown in Fig. 5~b!. Compar-
ing with simulation results, we see that the assumption o
smooth energy landscape used in the present work is val
this regime. As shown in Table I , the theoretical and simu
lation results of macroscopic properties also agree well.

In Fig. 5~c!, T52.5 and the stability condition is violated
There is now a gap in both the theory and simulation. Ho
ever, at a higherT in Fig. 5~d!, the theoretical prediction o
the band gap is broader and has sharper edges than the
lation one. At the same time, there are prominent differen
of the corresponding« t ,R, and, especially,q in Table I. Two
arguments are relevant. First, the narrowing of the band
can be explained by the presence of metastable states i
band gap as discussed in Fig. 3. These metastable s
probably prevent the learning process to converge to

-
s.

e,
n

an-

FIG. 5. Theoretical and simulation results of student activat
distributions, indicated by solid and dashed lines, respectiv
whena53 andl50.002@denoted by a star in Fig.~4!#. We choose

ỹ52A11T2 for different noise temperatures, so thatP( ỹ) are the
same. The arrow in~b! shows the position of a pseudo gap and t
arrows in ~c! show the band gap@1.18, 2.78# from the theoretical
prediction in Fig. 3.
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TABLE I. The comparison of macroscopic parameters and errors obtained from theory~roman! and
simulation~italics in brackets! for different T whena53 andl50.002.

T g R q e t eg

0.1 11.1 0.963~0.961! 0.933~0.932! 0.018~0.017! 0.027~0.027!
2.0 14.9 0.796~0.795! 2.211~2.196! 0.236~0.236! 0.376~0.375!
2.5 20.6 0.837~0.822! 3.816~3.574! 0.260~0.260! 0.437~0.431!
5.0 80.1 0.920~0.848! 23.05~16.34! 0.275~0.301! 0.577~0.570!
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ground state, which, therefore, yields a value ofq different
from the theory. Second, due to the violation of the stabi
condition ~22! when the band gap develops, a rough ene
landscape as discussed previously@29# must be introduced to
improve the agreement.

In Fig. 6, the variation of the activation distributions fo
different a at a givenT andl shows another trend of ban
gap evolution. One finds that while Fig. 4 shows that ins
ficient examples cause the appearance of band gaps, her
possible that the fraction of examples located in the sa
ficed band decreases with the size of the example set. Th
fore, the competitive effects of learning strategies are ser

FIG. 6. The theoretical prediction of the student activation d
tributions atT55 andl50.001 for different sizes of the training

seta, whereỹ50. Whena55, the system has two states. Resp
tively, ~d! and ~e! are the distributions when the system is in t
poor and good generalization states.
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only when both the noise and the size of training set
large, as one may expect intuitively.

V. PHASE TRANSITIONS

Another consequence of nonlinearity is the existence
two stable solutions ofR, q, andg to the mean-field equa
tions ~27!, ~28!, and ~18! for a given set of parameters
Studying the behaviors of the curves ofl versusg such as
those in Fig. 7, we find two critical parametersac* (T) and
a0(T) for a given noise temperatureT. The three accompa
nying cases of phase behavior are illustrated in Fig. 8.

Case 1:a,ac* (T). l is a monotonic decreasing functio
of g. Hence for any weight decay strength, there is a uniq
local susceptibility. Numerical results in this region sho
that the magnitude of student weight vectorq increases with
decreasing weight decayl. As shown in Fig. 8, there is no
phase transition.

Case 2:ac* (T)<a,a0(T). At a5ac* (T), multiple solu-
tions of g for a givenl start to appear near the inflectio
point of the curve. The solution with the smallestg corre-
sponds to thegood generalizationsolution with smallq and
«g . The solution with the largestg corresponds to thepoor
generalizationsolution with largeq and«g . In between the
two solutions, there is a third, unstable, solution, which c
be considered as the barrier separating the two stable s
tions in the energy landscape. Whena increases beyond
ac* (T), the intermediate range ofl where multiple solutions
exist becomes increasingly wide.

-

- FIG. 7. The dependence of local susceptibilityg on the weight
decay strengthl for different a at T51, with ac* (1)51.65 and
a0(1)51.74. All curves approachl50 wheng goes to infinity.
2-7



ly
it

he

b

a
a

o
fo
e
th
v
t

d
b

n
liz
e

n
ble
o
e
a

e
nin
x

y

om
ple

in

i-

ally
e is
ar

fac-
s a

rtly
hat

PEIXUN LUO AND K. Y. MICHAEL WONG PHYSICAL REVIEW E 64 061912
At very largel, the good generalization state is the on
stable solution. Whenl decreases, a metastable state w
poor generalization appears at thespinodal pointlp(a,T).
Whenl decreases further, the globally stable state switc
from the good generalization state to the poor atlc(a,T). As
shown in the inset of Fig. 8, the energy curve has two sta
branches that cross atlc(a,T), where a first-order transition
occurs, with possible hysteretic effects. On further decre
ing of l, the metastable state of good generalization dis
pears at anotherspinodal pointlg(a,T). Henceac* (T) is a
critical point where discontinuous transition first appears.

Case 3:a.a0(T). At a5a0(T), the spinodal pointlg
of the good generalization state vanishes. Hence both p
generalization and good generalization solutions coexist
l below lp down to zero, as shown in Fig. 8. Here th
example set is large enough to provide information about
teacher such that the good generalization solution exists e
in the absence of weight decay, although it may be me
stable.

The existence of the discontinuous transition whenl
changes, accompanied by the hysteretic effects, is verifie
the simulation of a sample in Fig. 9. It is interesting to o
serve a third state with intermediateq and«g . The existence
of such intermediate states is not uncommon in simulatio
although transitions between the poor and good genera
tion are mostly direct, as predicted by the theory. Consid
ing the stability condition~22! for the parameters used i
Fig. 9, we find that the perturbative cavity solution is sta
in the good generalization phase, but unstable in the p
one. This strongly implies that multiple metastable states
ist in the poor generalization phase, contributing to the c
cading transition observed in Fig. 9.

Similarly, discontinuous transitions occur whena in-
creases for a givenl. In the learning curves in Fig. 10, w
see that the student may even learn worse for more trai
examples if they are not sufficient. Only after sufficient e
amples are fed to the student will«g decrease asymptoticall

FIG. 8. The dependence of generalization error«g on the weight
decay strengthl for values ofa belonging to three different kinds
of phase behavior when the noise temperatureT51. Inset illustrates
the three branches of energy curve fora51.90.
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on increasinga, showing a bump at intermediatea. For
smaller weight decay, there is a discontinuous transition fr
a good to a poor generalization state at a critical exam
size ac(l,T). Discontinuous transitions on changinga and
l are also observed in the high temperature limit
multilayer networks learning clean examples@25#. For in-
creasingl, the bump smoothes out and the position ofa
with maximum«g shift towards 1. The position of the max
mum also depends on the noise temperatureT. For small
values ofT, the maximum stays neara51. For larger noise,
the maximum could move to higher values ofa, which im-
plies that more examples are required for the student to re
learn some essence of the teacher’s rule when the nois
stronger. Similar overtraining behavior is also found in line
networks learning unrealizable tasks@13,14#, but no phase
transition is found there.

At the parameters used in Fig. 11~a!, sample averaged
simulations show that theory and simulation agree satis
torily on both sides of the bump. However, theory predict
relatively abrupt change of«g for a around 1.6, which is not
observed in the simulation. This discrepancy may be pa
due to the finite size effects, but we cannot preclude t

FIG. 9. Variations of«g ,« t ,R, andq of a sample in simulation
when the weight decay strengthl changes atT55 anda54. The
number of input nodesN550. The arrows in~a! denote the routes
of changingl.
2-8
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CAVITY APPROACH TO NOISY LEARNING IN . . . PHYSICAL REVIEW E64 061912
effects of rough energy landscape~RSB! also contribute.
This discrepancy between theory and sample avera

simulations is also observed at the parameters used in
11~b! when discontinuous transitions exist. Hysteretic effe
are shown by the different values of the transition points
the upward and downward directions of changinga, given
by ac

u(l,T)54.84 and ac
d(l,T)54.29, respectively. The

theoretical prediction ofac(l,T) is obtained in Fig. 12 from
the intersection of the two branches of the energy cur
However, this prediction ofac

t (l,T)55.95 is higher than the
position of hysteresis. Again, we attribute the discrepancy
finite size and the rough energy landscape.

We can interpret the effects of a rough energy landsc
from the comparison between theoretical and simulation
sults. For smalla, Fig. 6 shows that although a band g
exists in the activation distribution, the statistical weight
the outlying bands is only very small, thus the correction d
to a rough energy landscape is minor, as can be seen in
11~b!. When the size of the training set increases, the incre
ing weight of the outlying bands implies stronger effects
rough energy landscapes, which may account for the low
ing of the criticala of the discontinuous transition in simu
lations when compared with the prediction of a smooth
ergy landscape. It is found that the smooth ansatz is st
for the branch of good generalization state in Fig. 12,
unstable for the poor one. Hence the introduction of

FIG. 10. The learning curves for different weight dec
strengths:~a! T51; ~b! T55.
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FIG. 11. Simulation versus theoretical results for the gener
zation error«g on changinga. For T51 andl50.0001 ~a!, the
simulation result is the average over 14 samples. ForT55 andl
50.001~b!, the simulation result is the average over 20 samples
decreasing and increasinga. In all simulations, the number of inpu
nodesN5150.

FIG. 12. The energy per nodesE/N ~solid line! and the magni-
tude of student vectorq ~dotted line! versus the sizea of training
set, whereT55 andl50.001. The phase transition point is dete
mined from the crossover of the two stable branches of the en
curve,ac

t 55.95, and the spinodal point of the good generalizat
state is atag

sp54.36.
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PEIXUN LUO AND K. Y. MICHAEL WONG PHYSICAL REVIEW E 64 061912
roughening effects will modify the energy curve of the po
generalization state, while that of the good one remains
changed, thus shifting the position of the crossing point. T
lowering of thea value in simulations implies that the en
ergy of the poor generalization state is higher when
change from a smooth picture to a rough one. This is c
sistent with previous results that RSB increases the energ
similar perceptrons with discrete outputs@19,21#.

The full phase diagram is drawn in Fig. 13 for a give
noise temperatureT. Above and below thethermodynamic
transition line, line a, the perceptron is in the good and po
generalization phase respectively. Linea ends at the critical
point P, wherea5ac* (T). The values ofq and «g change
discontinuously when the global parameters move across
a, but continuously when they move around pointP without
crossing linea. Line b denotes the stability line separatin
the regimes of smooth and rough energy landscapes.
rough regime covers the entire region left of the stability li
as well as the entire poor generalization phase below lina.
Here the position of linea is estimated assuming smoo
energy landscape. Simulations such as those in Fig. 1~b!
indicate that the effects of rough energy landscapes may
its position leftwards. Linec is thespinodalline of the poor
generalization phase, wherel5lp(a,T). The poor generali-
zation phase is metastable in the shaded region bounde
the linesc anda. Similarly, line d is thespinodalline of the
good generalization phase, wherel5lg(a,T), with the
good generalization phase being metastable between lind
and a. When l approaches zero, the abscissa of lined ap-
proachesa0(T). Both lines c and d are computed in the
smooth ansatz only, with roughening effects neglected.

It is interesting to consider the change of learning strat
in different regions of Fig. 13. In the region bounded by lin
c and d, more than one learning strategies are compe
against each other, corresponding to different local mini
in energy. To the left of lineb, all states adopt learning stra
egies that sacrifice a fraction of examples, but those w
largeq ~poor generalization as shown in Fig. 12! sacrifice a
significantly large fraction. To the right of lineb, the compe-
tition takes places between states with largeq, which sacri-
fice a fraction of examples, and those with smallq ~good

FIG. 13. The phase diagram for nonlinear perceptrons learn
noisy examples whenT51. P is the critical point witha5ac*
51.65. Lined terminates ata5a051.74 whenl approaches zero
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generalization as shown in Fig. 12!, which use a more even
handed strategy with no band gaps separating the activat
Around the phase transition linea, the globally minimal state
switches on increasinga, from one with sacrificial strategy
to a more even-handed one. This discontinuous chang
learning strategies is illustrated from Figs. 6~a!–~d! to 6~e!,
where the phase transition linea is crossed over on increas
ing a for a givenl.

Outside the region with multiple states, the magnitudeq
of the student weight vector decreases above linec ~since
weight decay becomes strong! or to the left of the lined
~since examples are not enough!. Hence the weight vector is
not flexible enough to allow for multiple strategies. In ge
eral, the fraction of sacrificed examples is smaller in t
region. This reduces the difference between the strategie
sacrificing and not sacrificing the examples. As a result,
states to the left of lineb learn with a single sacrificial strat
egy and to the right of it with a single even-handed strate

VI. CONCLUSION AND REMARKS

We have studied the supervised learning of noisy
amples in nonlinear and differentiable perceptrons using
cavity method, yielding predictions identical to the repli
method, yet providing a more physical interpretation. T
mean-field equations enable us to study the macroscopic
havior of the system. An example is the optimal weight d
cay lopt that minimizes the generalization error, as illu
trated in Fig. 8, analogous to previous studies in the lin
perceptrons@15#. However, the emphasis of this paper is
phenomena attributable to the conflicting information inh
ent in noisy data, and the nonlinearity of the student perc
tron. We have demonstrated the existence of band gaps in
activation distribution, separating preferred and sacrific
examples. It is an indication of the extent of informatio
competition and the roughness of the energy landscape,
responding to the effect of RSB in the replica approach. T
more prominent the band gaps, the more significant the
fects of rough energy landscapes. When tuning up the we
decay or increasing the size of the training set, a phase t
sition occurs in the student perceptron from a poor gener
zation state with a long weight vector to a good generali
tion state with a short weight vector. The phase transition
accompanied by a change in the learning strategy from
rificial to even handed. We present the phase diagram of
system, together with the boundaries of the gapped reg
and of the metastable region. The relation between band g
and the picture of a rough energy landscape was discuss
a previous study@29#. Here we further show where this con
sideration is most necessary.

We remark that the preferential or sacrificial effects a
common in many other learning systems, such as multila
perceptrons@29# and weight pruning networks@34#. They
create metastable states that cause the hysteretic behav
shown in our simulations~see Figs. 9 and 11!. The presence
of metastable states prevent the convergence of dynam
learning process to the ground state. Hence it is an impor
issue in the practical implementation of learning dynamic

We have illustrated that the cavity method can be used

g

2-10
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CAVITY APPROACH TO NOISY LEARNING IN . . . PHYSICAL REVIEW E64 061912
analyze systems laden with conflicting information. It can
applied to other systems such as support vector mach
~SVM! when examples are noisy and insufficient@35#. SVM
learning of clean examples has recently been studied u
the replica theory@36#. However, since the functional form
of the energy is different, band gaps may not be pres
Nevertheless, a cavity analysis of SVMs could offer n
valuable insights.
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APPENDIX A: THE CAVITY ACTIVATION AND LOCAL
SUSCEPTIBILITY

From Eqs.~3! and~7! and the definitions oft0 andx0, we
obtain

x02t05
1

l
~O02 f 0

0!~ f 0
0!81

1

lN (
m j

@~Om2 f m
0 !~ f m

0 !8

2~Om2 f m! f m8 #j j
mj j

0 . ~A1!

Expanding the last term to first order, and assuming thatxm
is a well defined function oftm , we arrive at

x02t05
1

l
~O02 f 0

0!~ f 0
0!81

1

lNAN

3(
m j

@2~ f m8 !21~Om2 f m! f m9 #
]xm

]tm
j j

mj j
0

3 (
k(Þ j )

~Jk
0\m2Jk

\m!jk
m1

1

lNAN
(
m j

@2~ f m8 !2

1~Om2 f m! f m9 #
]xm

]tm
~Jj

0\m2Jj
\m!~j j

m!2j j
0 , ~A2!

whereJk
0\m andJk

\m denote the student weights trained wi
training sets without examplem, and, respectively, with and
without example 0. Note that(k(Þ j )(Jk

0\m2Jk
\m)jk

m/AN'tm
0

2tm;O(N21/2) and is uncorrelated withj j
m . Neglecting the

dependence of@2( f m8 )21(Om2 f m) f m9 #(]xm /]tm) on jk
mj j

m

that is of orderN21, we conclude that the second term on t
right-hand side of Eq.~A2! is of orderN21/2 and hence neg
ligible. In the last term, (j j

m)2 is uncorrelated with (Jj
0\m

2Jj
\m)j j

0 , and hence can be replaced by its average valu
1. For the remaining summation overj ,( j (Jj

0\m

2Jj
\m)j j

0/AN reduces to x0
\m2t0

\m . Assuming that the
change in the activation differencex2t of examples 0 due to
the removal of examplem is small,x0

\m2t0
\m further reduces

to x02t0. Thus
06191
e
es

ng

t.

nt

of

x02t05
1

l
~O02 f 0

0!~ f 0
0!81

1

lN

3(
m

@2~ f m8 !21~Om2 f m! f m9 #
]xm

]tm
~x02t0!.

~A3!

Defining the local susceptibilityg by

g215l1
1

N (
m

@~ f m8 !22~Om2 f m! f m9 #
]xm

]tm
, ~A4!

we arrive at Eq.~8!. Applying the same cavity argument t
examplem,tm andxm should also be related by Eq.~8!. This
simplifies Eq.~A4! to

g215l1
g21

N (
m

S ]tm

]xm
21D ]xm

]tm
, ~A5!

from which Eq.~9! follows.

APPENDIX B: THE STABILITY CONDITION

In obtaining Eq.~A2!, the validity of the perturbative ex
pansion in Eq.~A1! is subject to the condition that the fluc
tuationDJ5( j (Jj

02Jj )
2 is finite. Subtracting Eq.~7! by Eq.

~3!, multiplying both sides byJj
02Jj and summing overj,

we obtain

DJ5
1

lg
~x02t0!22

1

lg (
m

S 12
]xm

]tm
D ]xm

]tm
~ tm

0 2tm!2,

~B1!

where Eq.~8! is adopted, andxm is assumed to be a we
defined function oftm . The factor (tm

0 2tm)2 in Eq. ~B1! can
be expanded as( jk(Jj

0\m2Jj
\m)(Jk

0\m2Jk
\m)j j

mjk
m/N and is

only related with (12]xm /]tm)(]xm /]tm) in the order
O(N21). Therefore, the average overm of the former and
latter’s product can be replaced by the product of their av
ages. Since (Jj

0\m2Jj
\m)(Jk

0\m2Jk
\m) are uncorrelated with

examplesjm, only terms withj 5k contribute to the average
overm. Then(m(tm

0 2tm)2 becomesDJ
\m . Assuming that the

change inDJ due to the removal of examplem is small, this
further reduces toDJ and renders~B1! to

DJ5
1

lg
~x02t0!22

1

lgN (
m

S 12
]xm

]tm
D ]xm

]tm
DJ .

Using Eq.~8!, this can be further reduced to Eq.~21!.

APPENDIX C: THE EFFECTS OF A GAP ON MEAN- FIELD
EQUATIONS

When there is a gap in the distributionP(xu ỹ), xm is no
longer a differentiable function oftm , the mean-field equa
tions ~14!, ~17!, and~18! are subject to modification.

In Eq. ~A1!, the summation overm now includes different
situations depending on the value of the cavity fieldtm . For
2-11
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those examples withtm and tm
0 located on the same side o

the gap, the analysis is similar to that in Appendix A. Ho
ever, if tm is close to the gap positiontg , then when the new
example 0 is included in the training set, the change of ca
activationDtm[(k(Jk

0\m2Jk
\m)jk

m/AN may give rise to large
value of (Om2 f m

0 )( f m
0 )82(Om2 f m) f m8 as the generic activa

tion xm changes fromx,(tm) to x.(tm
0 ) or from x.(tm) to

x,(tm
0 ). We distinguish the following cases to calculate t

summation in Eq.~A1!.
The first case corresponds totg2Dtm,tm,tg . Among

the p examples, this happens with probabilityd„tm

2tg( ỹm)…Dtmu(Dtm). Its contribution to the summation in
Eq. ~A1! is

(
$Case 1%

5
1

lN (
m j

d„tm2tg~ ỹm!…Dtmu~Dtm!

3$@ f ~ ỹm!2 f ~xm
.!# f 8~xm

.!2@ f ~ ỹm!

2 f ~xm
,!# f 8~xm

,!%j j
mj j

0 . ~C1!

Similarly, the second case corresponds totg,tm,tg2Dtm ,
with the contribution

(
$Case 2%

5
1

lN (
m j

d„tm2tg~ ỹm!…~2Dtm!u~2Dtm!

3$@ f ~ ỹm!2 f ~xm
,!# f 8~xm

,!2@ f ~ ỹm!

2 f ~xm
.!# f 8~xm

.!%j j
mj j

0 . ~C2!

Combining them together, we have the total contribut
from the gap

(
$Gap%

5
a

l
~x02t0!E dyP~y!E dỹP~ ỹuy!

3E dtP~ tu ỹ!d„t2tg~ ỹ!…$†f ~ ỹ!2 f „x.~ t,ỹ!…‡

3 f 8„x.~ t,ỹ!…2†f ~ ỹ!2 f „x,~ t,ỹ!…‡

3 f 8„x,~ t,ỹ!…%. ~C3!

Simplifying the integrals, we have
06191
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(
$Gap%

5
a

l

x02t0

A2pS q2
R2

11T2D
E Du

3expF 2

S tg2
R

A11T2
uD 2

2S q2
R2

11T2D G
3$†f ~ ỹ!2 f „x.~ tg ,ỹ!…‡f 8„x.~ tg ,ỹ!…2†f ~ ỹ!

2 f „x,~ tg ,ỹ!…‡f 8„x,~ tg ,ỹ!…%, ~C4!

with ỹ5A11T2u. Therefore, we obtain the self-consiste
equation~27! for g and reproduce the functiont(x) in Eq.
~8!, wherex is related tou andv by Eq. ~15!. The positions
of band gaptg ,x, and x. are determined using the Max
well’s construction discussed in Sec. IV. Following Eqs.~27!,
~8!, and~15!, we get the equation ofR with extra terms~28!
and equation ofq without extra term~18!, after elaborate
work on integrating by parts.

APPENDIX D: CONDITION FOR MAXWELL’S
CONSTRUCTION

For a given teacher outputf ( ỹ), x is a multivalued func-
tion of t when t8(x),0 at the inflection pointt9(x)50. For
the sigmoid functionf (x)5@11e2x#21, this implies

1

2g
,

f 2~12 f !2~123 f 13 f 2!

126 f 16 f 2
,

f ~ ỹ!5
f ~4215f 112f 2!

126 f 16 f 2
, ~D1!

wheref representsf (x) at the inflection point. Thus, we ob
tain the condition of Maxwell’s construction~30! if we de-
fine W as the parametric function ofg via

W5
~2f21!~1212f112f2!

2~126f16f2!
,

g5
126f16f2

2f2~12f!2~123f13f2!
. ~D2!

The function ofW(g) for g.0 is plotted in Fig. 2.
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